Enrollment No: _____ Exam Seat No:____

C. U. SHAH UNIVERSITY

Winter Examination-2020

Subject Name: Engineering Mathematics - III

Subject Code: 4TE03EMT1/4TE03EMT2 Branch: B.Tech (All)

Semester: 3 Date: 08/03/2021 Time: 11:00 To 02:00 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1	Attempt the following questions:	(14)
-----	----------------------------------	------

- a) If f(D)y = X is given linear differential equation then its general solution is .
 - (a) y(x) = C.F + P.I (b)Solution of f(D) = 0
 - (c) y(x) = P.I (d)None of these
- **b)** If f(-x) = -f(x) then f is (a) Even function (b)Odd function
 - (a) Even function (b)Odd function (c)(a) and (b) both (d) None of these
- c) The operator 'D' means (a)Degree of equation (b) Order of equation $(c)\frac{d}{dc}(d)$ None of these
- d) If the function f(x) is odd then which of the following is/are zero? (a) a_0 (b) a_n (c) b_n (d)(a) and (b) both
- e) If roots of auxiliary equation are $m_1 = 1$ and $m_2 = -2$ then its C.F 01 is ____
 - (a) $c_1 e^x + c_2 e^{-2x}$ (b) $c_1 e^x + c_2 e^{-x}$ (c) $c_1 e^{-x} + c_2 e^{-2x}$ (d) $c_1 e^{2x} + c_2 e^{-2x}$
- f) If the differential equation is $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = 0$ then roots of auxiliary equation is/are____
 - (a) $m_1 = 1, m_2 = -2$ (b) $m_1 = -1, m_2 = -1$ (c) $m_1 = 1, m_2 = 1$ (d) $m_1 = 2, m_2 = -1$
- g) The graph of odd function is symmetric about
 (a) Opposite quadrant
 (b)X- axis
 - (a) Opposite quadrant (b)X- axis (c)Y-axis (d) None of these
- h) Laplace transform of e^{2t+3} is $(a)\frac{e^3}{s-2}(s > 2) \qquad (b)\frac{e^2}{s-3}$

		$(c)\frac{1}{s-\log 2}$ $(d)\frac{1}{s-2}$	
	i)	Laplace transform of $t^{-\frac{1}{2}}$ is	01
		(a) $\frac{\pi}{\sqrt{2}}$ (b) $\sqrt{\left(\frac{\pi}{s}\right)}$ (c) $\frac{\sqrt{\pi}}{s}$ (d)None of these	
	j	$L(\sin at) = \underline{\qquad}$ (a) $\frac{a}{s^2 + a^2}$ (b) $\frac{s}{s^2 + a^2}$ (c) $\frac{-s}{s^2 + a^2}$ (d) $\frac{-a}{s^2 + a^2}$	01
		(a) $\frac{\alpha}{s^2 + a^2}$ (b) $\frac{3}{s^2 + a^2}$ (c) $\frac{3}{s^2 + a^2}$ (d) $\frac{\alpha}{s^2 + a^2}$	0.1
	k	$L^{-1}\left(\frac{12}{s^2-9}\right) = \underline{\hspace{1cm}}$	01
		(a) $3 \sin h(4t)$ (b) $4 \sin h(3t)$ (c) $4 \cos h(4t)$ (d) $3 \cos h(4t)$	
		(c) $4 \cos n (4t)(0) = 3 \cos n (4t)$	
	Ŋ	Which of the following is the partial differential equation of $z = ax + by + ab$ by eliminating arbitrary constant.	01
		(a)z = px + qy + pq(b)z = pz - qy + pq	
	n	(c) $z = px + qy - pq(d)$ $z = px - qy - pq$ a) The rate of convergence of Newton – Raphson method is	01
		(a) First order (b) Second order (c) Third order (d) None	
	n	Solution of $(D^2 - 1)y = 0$ is (a) $y = (c_1 + c_2)e^x$ (b) $y = c_1e^{-x} + c_2e^x$	01
		(c) $y = (c_1 + c_2)e^x$ (d) None of these	
Atten	npt aı	ny four questions from Q-2 to Q-8.	
	•		[14]
Q-2	a.	Attempt all questions Find the root of equation $x^3 - 3x - 5 = 0$ using bisection method	[14] 05
	b.	correct up to three decimal places. Find real root of equation $xe^x - 3 = 0$, Which lies between 0.8 and 0.9	05
	υ.	correct to three decimal places using False position method.	03
	c.	Find the root of equation by using Newton-Raphson method $2x - \tan x = 0, x > 0$.	04
		2x + con x = 0, x > 0.	
Q-3		Attempt all questions	[14]
	a. b.	Expand $f(x) = x \sin x$ in a Fourier series in the interval $0 \le x \le 2\pi$. Express $f(x) = x + x^2$ as a Fourier series with period 2 in the range	06 06
	C	-1 < x < 1. State Dirichlet's condition for Fourier series.	02
	c.	State Difference & condition for Fourier series.	02
Q-4	a.	Attempt all questions Find the Fourier cosine series corresponding to the function	[14] 05
		$f(x) = \pi - x$ defined in the interval 0 to π .	
	b.	Prove that $\int_0^\infty rac{e^{-at}-e^{-bt}}{t}dt = \lograc{b}{a}$	05
	c.	$\begin{cases} \frac{t}{-}, 0 < t < T \end{cases}$	04
		Find Laplace transform of the function $f(t) = \begin{cases} \frac{t}{T}, & 0 < t < T \\ 0, & t > T \end{cases}$.	

Q-5		Attempt all questions				[14]			
	a.	Solve: $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = \cos 2x$					05		
	b.	Find $L\left(\frac{\cos at - \cos bt}{t}\right)$							05
	Find a root of the equation $x^3 - 9x + 1 = 0$, correct to three decimal places using False position method.							decimal	04
Q-6		Attempt all questions					[14]		
	 a. Solve the given differential equation by using Laplace transform y" + 4y = 0, y(0) = 2, y'(0) = 8. b. Solve: (D² - 7D + 10)y = 5x + 7 c. Write down general form of linear differential equation in higher order. 							orm	07
									05
								her order	03
Q-7	C.	Attempt all questions						[14]	
	a.	Solve: $\frac{d^3y}{dx^3} - 7\left(\frac{dy}{dx}\right) - 6y = 0.$						05	
	b.	Find inverse Laplace transform by using convolution							05
	theorem $L^{-1}\left\{\frac{s}{s^2+a^2}\right\}$								
	c.	Find: $L(e^{4})$	t sin 2 <i>t</i> co	st)					04
Q-8		Attempt a	all question	ns					[14]
	a.	Obtain the first three terms in the Fourier cosine series for y , where y is						07	
		given in the following table:							
		θ°	0	60	120	180	240	300	
		y	4	8	15	7	6	2	
	b.	Solve the equation $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$, given $u(x, 0) = 6 e^{-3x}$.							07

